Identification of linked regions using high-density SNP genotype data in linkage analysis

نویسندگان

  • Guohui Lin
  • Zhanyong Wang
  • Lusheng Wang
  • Yu-Lung Lau
  • Wanling Yang
چکیده

MOTIVATION With the knowledge of large number of SNPs in human genome and the fast development in high-throughput genotyping technologies, identification of linked regions in linkage analysis through allele sharing status determination will play an ever important role, while consideration of recombination fractions becomes unnecessary. RESULTS In this study, we have developed a rule-based program that identifies linked regions for underlined diseases using allele sharing information among family members. Our program uses high-density SNP genotype data and works in the face of genotyping errors. It works on nuclear family structures with two or more siblings. The program graphically displays allele sharing status for all members in a pedigree and identifies regions that are potentially linked to the underlined diseases according to user-specified inheritance mode and penetrance. Extensive simulations based on the chi(2) model for recombination show that our program identifies linked regions with high sensitivity and accuracy. Graphical display of allele sharing status helps to detect misspecification of inheritance mode and penetrance, as well as mislabeling or misdiagnosis. Allele sharing determination may represent the future direction of linkage analysis due to its better adaptation to high-density SNP genotyping data. AVAILABILITY http://paed.hku.hk/uploadarea/yangwl/html/index.html

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies.

Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed by regions of low LD. A small fraction of SNPs (tag SNPs) is sufficient to capture most of the haplotype structure of the human genome. In this paper, we develop a method to partition haplotypes into blocks and to identify tag SNPs based on genotype data ...

متن کامل

Identification of QTLs for grain yield and some agro-morphological traits in sunflower (Helianthus annuus L.) using SSR and SNP markers

Many agriculturally important traits are complex, affected by many genes and the environment. Quantitative trait loci (QTL) mapping is a key tool for studying the genetic structure of complex traits in plants. In the present study QTLs associated with yield and agronomical traits such as leaf number, leaf length, leaf width, plant height, stem and head diameter were identified by using 70 recom...

متن کامل

The Pattern of Linkage Disequilibrium in Livestock Genome

Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...

متن کامل

Identification of Linked Markers for Delayed Fruit Ripening in Tomato Using Simple Sequence Repeat (SSR) Markers

Tomato (Solanum lycopersicum L.) is an important vegetable crop and acts as model plant for fruit development studies. Besides that, post-harvest damage is a devastating phenomenon often associated with ripening process in tomato which in turn leads to greater yield loss. Understanding the genetics, molecular and biochemical pathways is the key to overcome the existing situation. In th...

متن کامل

Application of Homozygosity Haplotype Analysis to Genetic Mapping with High-Density SNP Genotype Data

BACKGROUND In families segregating a monogenic genetic disorder with a single disease gene introduction, patients share a mutation-carrying chromosomal interval with identity-by-descent (IBD). Such a shared chromosomal interval or haplotype, surrounding the actual pathogenic mutation, is typically detected and defined by multipoint linkage and phased haplotype analysis using microsatellite or S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2008